SUSTAINABLE URBAN DISTRICTS: EUROPEAN ENVIRONMENTAL SHOWCASE MODELS

Tigran HAAS¹ and Elisabetta TROGLIO²

UDC: 711.45-122:502.171

SUMMARY

Starting from the 90s, the design of new districts having strong environmental and energy sustainable profiles has gained attention among public administrations and project teams. These co-operations have brought new lines of research oriented towards the definition of different energy strategies at the urban and local scales. This paper analyzes the importance of local polices to create sustainable districts: main European case-studies; The research has been conducted on main European ecological showcase models; Compact city, solar and wind design, mobility and car free development, environment, biodiversity, green and water infrastructures, role of the inhabitants (public participation processes) are the focus areas in which the districts can be allocated. Common aspect of the different projects is the compact city concept, which joins the nowadays debate around dense urban areas. Several conclusions can be drawn related with the sustainable design of new settlements. In general the high density and compact city concepts are applied in the entire analyzed projects, which recognize the positive effects related with the installation of DER systems, public transport, and public services in accordance with principles of effectiveness and efficiency. The compact city is linked with the increase of functional mix and that has positive effects on reducing energy demand peaks.

Key words: European Eco Cities, Sustainability, New Districts, Compact Cities, Environment, Energy Efficiency, Resilience

¹ **Prof. Dr. Tigran Haas**, KTH Royal Institute of Technology, School of Architecture and the Built Environment, Centre for the Future of Places, 114 28 Stockholm; tigran.haas@abe.kth.se

² **Dr. Elisabetta TROGLIO**, KTH Royal Institute of Technology, School of Architecture and the Built Environment, Department of Urban Planning & Environment, 114 28 Stockholm; elisabetta.troglio@abe.kth.se

INTRODUCTION

Starting from the 90s, the design of new districts having strong environmental and energy sustainable profiles has gained attention among public administrations and project teams. These co-operations have brought new lines of research oriented towards the definition of different energy strategies at the urban and local scales.

Over the past twenty years, a growing attention to the sustainability of cities and neighborhoods has emerged, gaining space in the political and design debate. Cities are identified as best starting point for apply the targets of sustainable development and sustainable energy set by international agreements and national policies (Commission of European Communities, 2007; IPCC, 2007). In particular, the role of the design of new and existing areas has shown the potentiality for adapt the urban grid to the climatic and environmental characteristics of a place (Breheny, 1992; Jenks et al., 2000), contributing in changing energy and environmental performance of a settlement, thanks also to the feasibility for installing energy saving and production technologies (Bell et al., 2003; Steemers et al., 2000).

Despite the studies undertaken in the field of urban sustainability, it is still possible to identify an imbalance of knowledge between city and building, with the latest prevailing in the technical and design point of view. Since the city is not formed by the mere sum of single buildings, and their energetic performances – although high – do not necessarily bring to high performances at the urban scale. Studies related with the energetic role of urban morphology thus need to focus and strength to a different level (Droege, 2006). At the same time, also the energy certifications and rules developed for the housing sector, as well as the simulation models, do not find similar equivalents at the urban level, where governmental directives define quite unspecific strategies of demand control and energy reduction.

The city and its districts, moreover, are required to be used in different moments by different users, and this organization cannot be controlled only at the architectural level (Jenks et al., 2000). Different forms of mobility, use of open spaces and services are significant points whose management seems to be very difficult, if not impossible, without a coordinating actions and plans.

Identify design parameters – based on morphological and typological variables – that can affect energy performance, as well as technologies applicable at the neighborhood scale (such as cogeneration and district

heating or cooling, reuse of waste products, water cycle, etc.) become thus a central point of the research (Bell et al. 2003; Steemers et al., 2000).

Understanding the connections between urban form and energy – the energetic urban metabolism – is becoming increasingly important. In particular, the micro-scale of the neighborhood holds potential for improving the energy performance by acting on the morphology of the built environment (Breheny, 1992), control the energy peaks by calibrating the mix of uses (Burchell et al. 1982; Banister, 1997), mitigate the microclimate by greenery and water (Voogt, 2002), exploit local energy resources and identify the most appropriate solutions (Beatley, 1999).

Since the need of a shift in the design of urban areas towards sustainable concepts – using the keywords social, ecological, and energetic – has risen, many cities around the world have engaged projects for renewing their built environments and improving their management procedures. Define urban density, morphology of the built environment, natural and technical solutions can significantly contribute to energy savings, both in terms of energy consumed and supply of goods and services. The positive factors related with neighborhood design, and the application and test of policies identified at higher levels, have led different municipalities to promote new ecosustainable projects (Eco-Valle, 2006).

Among the different experiences of sustainable districts, some projects have gained general awards thanks to the improvement and innovation in the introduced planning, design and management procedures. Though sharing some common ideas – such as the importance of embodied technologies in buildings and a general concept of reducing CO_2 emissions and ecological footprint – each of the districts here selected is characterized by specific focus points, which can help to understand limits and capabilities of different approaches and solutions for achieve sustainability in city.

Focusing on sustainable districts characterized by high interrelation of human and natural factors and mix of functions – fundamental elements that can lead to a change in the energy and environmental performance of a city – it is possible to point out three main categories of site choice: conversion of brownfields, renewing of existing urban areas, development on green fields (SOURCE, 2008). Moreover, it is possible to indentify projects specifically focused on energy performance of buildings, thus missing out the concepts of integration with the city and its nets, and therefore losing the full potentialities for enhancing the quality of life in cities.

In particular, at the European level, it is possible to point out for the contribution given in the sustainable planning the districts of:

- BedZed and Greenwich Millennium Village (London, United Kingdom). The first one, although not characterized by a significant dimension of the development plot, and thus reducing the impacts at the city level, is one of the first projects which has approached the eco-design in a holistic way.
- Hammarby Sjöstad (Stockholm, Sweden), and Bo01 (Malmö, Sweden). The Swedish approach is characterized by a strong relation between energetic regulations (at national and local level) and project outputs. The case of Stockholm has demonstrated the importance of a management model (The Hammarby Model), while Malmö is characterized by a learning-by-doing process and an innovative use of urban morphology for wind regulation.
- Viikki (Helsinki, Finland). The preservation of natural areas and their integration into the urban grid have characterized the design process.
- GWL-Terrain and Ijburg (Amsterdam, Netherlands), Leidsche Rijn (Utrecht, Netherlands). Focussed on compact city in order to reduce the consumption of natural land, the projects are strongly influenced – especially GWL – from the public and bicycle transports that characterize the Netherlands.
- Vauban (Freiburg, Germany). Widely recognized as one of the first and most important sustainable projects of Europe, the planning procedures have underlined the role of the inhabitants, both in the designing and management phases, has a key point for reducing energetic and environmental impact of urban areas. Moreover, the project enhances the role of cross connections between research, industry and application/development, with a focus on solar energy, in which the city is one of the leaders of the European market.
- solarCity (Linz, Austria). The optimization of solar energy is the key point of the design. The masterplan had a fundamental leading role for the decisions undertaken and the targets achievement.
- eco-district CasaNova (Bolzano, Italy). Characterized by the design of an urban morphology able to enhance solar gains. Moreover, the project focuses on the connection with green and infrastructure nets between city and development area.

Compact city, solar and wind design, mobility and car free development, environment, biodiversity, green and water infrastructures, role of the inhabitants (public participation processes) are the focus areas in which the districts can be allocated.

Common aspect of the different projects is the compact city concept, which joins the nowadays debate around dense urban areas. The idea of designing a denser city aims to reduce land usage, economic costs connected with urban infrastructures implementation and air pollution related with car-based transport. The majority of the sustainable projects are, indeed, characterized by medium/high urban density, in a range from 60 to 100 dwelling per hectare. Moreover, they are mostly located in brown fields, accomplishing both the function of urban renewal and natural land conservation.

Among the other countries, Sweden and Netherlands have promoted in the last decades polices oriented towards an increasing compactness of the urban areas and a strong connection with the public transport system.

In the beginning of the 50s the City of Stockholm based large part of its development on new suburban self-contained centers, connected with the public transport. The new districts were characterized by high density of the built environment in the areas close to the station (usually 500 meters), while the dwellings for the middle-upper classes – having less density – were located in a ray of 900 meters. Despite the innovative concept of this policy, there have not been reductions in commuting trips to the capital, although the high rate of public transport usage has contributed to reduce gas emissions.

Similar strategy was undertaken, from the middle of the 60s to all the 80s, by the Dutch government, supporting actions for sprawl containment, while endorsing compact developments in – or close to – existing areas and transports nodes. Thanks to this policy, known also as concentrated deconcentration or clustered deconcentration (Beatley, 1999), 15 new urban centers, generally located in the Randstad area, were created. National funds partially subsidized the projects.

Solar gain is a well known and extensively used concept for districts and buildings design thanks to the significant energy reduction achievable, both active (i.e. solar and photovoltaic panels) and passive (i.e. reduced need of artificial light and heating). Nevertheless, some projects have adopted the solar concept as key point of their development strategy, testing a new way of designing and thinking urban areas. In particular, solarCity (Austria), Vauban (Germany) and BedZed (United Kingdom) have deepened this aspect, and are nowadays considered as best practices.

Solarcity, 32 hectares and 3 thousands inhabitants, is particularly interesting in connection with the holistic approach adopted, the innovation of the design process, and the technologies installed, which allows an easier reproducibility in other contexts.

Vauban, although similar for dimension (38 hectares and five thousands inhabitants), is characterized also for the connection with the urban polices and the strong role in the decision process of the dwellers-to-be. BedZed, although the choice of the morphology comes from detailed analyses of solar maps, is a small scale project (1.7 hectares and 250 inhabitants), reducing broader scale outcomes.

THE INFLUENCE OF URBAN DEISGN ON ENGERGY AND ENVIRONMENTAL SETTLEMENTS: PARAMETERS AND INDICATORS FOR EVALUATING THE ENERGETIC SUSTAINABLE LEVEL OF NEW SETTLEMENTS

As shown by best practices and sustainable projects, it is clear that the energy and environmental sustainability of new districts can be reached in several ways, implementing different aspects that contribute to improve the performances of the settlements. Thus it is important to define a common way to compare the development processes, understanding under which aspect they can be considered sustainable (energetic, environmental, social, and so on) and indentifying the role played by urban design in improving the energy performance of new settlements.

Basing both on research achievements (theories and studies related with energy and urban morphology) and field applications (sustainable districts), it is possible to identify five thematic groups that help to underline the relations between design choices and sustainable outputs. The thematic groups are related with compact city and mix of functions; solar gain and wind design; mobility; green and water design; technologies.

The first group *Compact city and mix of functions* includes aspects related with high residential density, reuse of urban areas, land use and functional mix, presence of public services. The second group *Solar gain and wind design* includes aspects of passive solar design, solar collection for energy production, thermal properties of building and natural materials, control and modification of the microclimate, dispersion of pollutants, and power generation. The third group *Mobility* includes aspects related to accessibility improvements (internal and external connections), wakability, the street and urban grid design, behavior of the inhabitants (modal choice). The fourth

group *Green and water design* includes aspects of climate mitigation and heat island effect control, green infrastructures, water management, and energy generation (biomass and waste). The fifth group *Technologies* includes aspects of DER – distributed energy resources, in particular regarding CHP plant, district heating and cooling, incinerators plant and waste recycle, solar and photovoltaic panels, and characteristics of building materials.

After identifying the thematic groups, assessment tables have been developed for evaluate with common methodology the case studies, overcoming particularities. The tables identify for each area optimal design elements, as coming from research and best practices. Each of them constitutes an indicator of performance and evaluation, to which correspond different points, according with the performances achieved by the project.

Three score levels have been defined:

- Low, the project achieves partially the requirements.
- Medium, the project requires further development and integration.
- High, the project incorporates the key elements identified by the indicator, and attains high energy performances.

Some indicators are based on the presence / absence criteria (yes / no), as it is not possible to have an intermediate level (e.g. in case of district cooling, either it is realized or not).

The maximum achievable points for each indicator are related with the influence that it plays in influencing the level of energy sustainability of a settlement. When an indicator has strong impact on other elements of the project and to the global energy performance, greater weight (points) was given.

The points are then assigned to the project in relation to the level reached for each parameter. The maximum obtainable score for each thematic group is 10, with a global score of 50 points in the five areas. The proposed method refers to the one developed by LEED ND, but it focuses specifically on the interaction between urban design and energy, and thus simplifying and merging some areas of analysis.

COMPACT CITY AND MIX OF FUNCTIONS

High residential density	Low	0	
Increasing the compactness of transformations	units /hectare ≤ 50	0	

and units per hectare. The main characteristics of the urban grid are based on the traditional city model, integrated	Medium units /hectare between 51 and 70	1
with the nowadays socio-economic conditions and the need to achieve better energy performances.	High units /hectare ≥ 71	2
Reuse of urban areas Reuse of brownfield sites (industrial, harbor, rail,	No	0
etc), decrease of land consumption.	Yes	2
Mix of land uses and social classes Creation of functional (residential, commercial,	Low Only residential	1
offices) and social mix thanks to different accommodation types (ownership, rent) and price range (social housing, private market).	Medium Residential and at least one other function. Social housing among the other form of rental/ownership.	2
	High Mix of functions and users, with the aim of create a new area of the city (liveable city concept)	3
Presence of public services Public services and meeting places having both	Low Only local services	1
local and urban scale, connceted to the transport system and pedestrian network (distance 500 m).	Medium Local public services connected with public transport net	2
	High Local and urban public services connected with public transport net	3
Score		10

SOLAR GAIN AND WIND DESIGN

	Passive Solar Design	Low	
	Road network and urban design defined to	Only limits imposed by	1
	optimize solar gain.	law	
	Attention to the liveability of urban spaces:	Medium	2
.u	avoid summer overheating and provide	Passive solar design	2
Solar gain	sunlight during winter time.	High	
lar		Passive solar design	3
Sc		(indoor) and urban	3
		comfort	
	Solar energy	No	0
	Use of solar and / or photovoltaic panels for	INO	U
	energy production, and increased	Yes	1

	exploitation of renewable sources.		
	Thermal characteristics of building and	Low	
	natural materials	No specific attention to	0
	Attention to the characteristics of urban	the used urban materials	
	materials (green, water and artificial	Medium	1
	elements) in relation to albedo (reflection	Green areas and basins	1
	coefficient) and thermal transmittance.	High	
		Thorough choice of the	
		materials. Design based	2
		on studies and	
		simulations.	
	Microclimate and dispersion of pollutants	Low	
	Design of the road section, orientation of the	No specific attention to	0
	urban grid, and use of natural materials to	the design of the urban	Ŭ
	protect settlements from winds, reduce	grid	
	winter heat losses, and improve	Medium	
	outdoor/indoor comfort in summer.	Wind used to disperse	
		pollutants and / or for	1
		summer climate	
u		mitigation	
Wind design		High	
de		Preliminary studies and	
ind		simulations to define	
M		the correct grid	2
		orientation (wind	
		protection and	
		exploitation of air	
	D	flows)	
	Power generation	No	0
	Use of micro wind turbines stations, wind		
	turbines plant, passive ventilation of	Yes	2
	buildings as part of the urban renewable	1 55	2
Score	energy mix.		10
SCOL	U		10

MOBILITY

Increased accessibility of the connections (within	Low	
the development and to the city)	Private mobility prevails	1
Construction of new public transport connections,	on public transports	
evenly distributed within the neighbourhood and	Medium	2
within walking distance (maximum distance 500	Public transports net	2
meters). Distances to train and subway stations	High	
can be higher (800 meters), but must be served by	Variety of public	
public transport or bicycle-pedestrian paths.	transports means	3
Reduction of physical barriers and construction of	(subway, bus, tram, etc.).	
new infrastructures (bridges, roads), if necessary.	Reduction of the barriers	

des auformation		-
	in the district and to the	
	neighbour areas.	
Increase cycling and walking (short distance)	Low	
Construction of pedestrian and bicycle paths to	Low rate of pedestrian	1
major urban functions and public services.	and bicycle paths	
Creation of public transport interchange points.	Medium	
	Pedestrian and bicycle	
	net used also as	2
	connection between	
	public services	
	High	
	Pedestrian and bicycle	_
	net connected with public	3
	services and transports.	
Design of the road section and urban grid	Low	
Design of the road section to separate the different	No specific attention to	
traffic flows, protected trails for walking / cycling.	the design of the road	0
Green areas along the roads used also as	section	
ecological corridor.	Medium	
Development of car-free settlements.	Design of different lanes	
Development of car nee settlements.	for different transport	1
	means.	
	High	
	Car-free developments,	
	street's net used as green	
	corridors, separation, and	2
	separation of different	
	traffic flows.	
Behaviour of the inhabitants (choice of transport	Low	
means)	Inhabitants are not	0
Promotion collective transport modes (car sharing,	involved	0
mobility manager), reduction of car ownership,	Medium	
increase soft mobility for short trips (800 m / 5	Car sharing and/or	
km).	reduction of car lots/units	1
niij.	(≥ 0.7)	
Reduction of parking plots: minimum threshold	(<u>20.7)</u> High	
for significant reductions is 0.7 lots / units, further	Polices to reduce the car	
results are obtained with a ratio lots / units, further	ownership rate between	
results are obtained with a ratio lots / units of 0.2.	the inhabitants, car	2
	sharing, reduction of car	2
	lots/units (≥ 0.7), car-free	
	development (≥ 0.7) , car-free	
Saora	development	10
Score		10

GREEN AND WATER DESIGN

GREEN AND WATER DESIGN		,
Climate control and heat island effect reduction	Low	
Heat island effect reduced through green areas	Design of green areas	
and water elements, winds can be conveyed	and/or basins with low	1
within the settlements for cooling purposes.	impact on the micro-	
	climate	
	Medium	
	Design of green areas	
	and/or basins with impact	2
	on the district's micro-	
	climate.	
	High	
	Interconnection of green	
	and water systems, able	
	to reduce the district's	3
	temperature and cooling	
	energy demand.	
Green Infrastructures	Low	
Protection of existing natural areas, inclusion of	Green areas and basins	
		0
new green areas, lakes and canals in the	not connected to each	
development site to create ecological corridors.	other.	
Streets are used to create ecological networks	Medium	1
between cities and outdoor areas.	District ecological net	
	High	_
	Ecological net between	2
	city and outdoor areas.	
Water management	Low	
Implementation of a water "closed" circle, district	Only one system (sewage	
sewage treatment plant, runoff reduction (green	treatment, runoff	1
roofs, increase of permeable areas), and rainwater	reduction, water	
reuse.	consumption reduction)	
Water consumption reduced by new sanitary	Medium	
systems, wastewater quality increased thanks to	Design of at least two	2
public information campaigns.	systems	
	High	
	Comprehensive	
	management of the	3
	district water cycle	
Energy from waste and sewage	Low	
Reuse of heat coming from waste/sewage	No use of biogas/biomass	0
treatment processes, biogas production, dried	Medium	
sludge use as fertilizer.	Use of at least one	
Use of the neighborhood biomass (green waste)	outcomes of the sewage	
for electricity production.	•	1
v 1	treatment (biogas,	
Increasing of the local energy mix from	biomass, heat from	
renewable sources.	sewage treatment, etc.)	

	for energy production.	
	High	
	Comprehensive use of the	n
	energy from sewage and	2
	waste treatment.	
Score		10

TECHNOLOGIES

District heating and CHP plant	Low	
District heating and / or CHP plant for the whole	District heating doesn't	0
neighborhood, powered (totally or mainly) with	cover the all	Ŭ
local energy resources (not less than 20%).	development site	
	Medium	
	District heating, CHP	
	plant fuelled with local	1
	renewable sources	
	(≤30%)	
	High	
	District heating, CHP	
	plant mainly fuelled	2
	with local renewable	
	sources (>30%)	
District cooling		
District cooling – propelled with local energy	No	0
resources (i.e. water purification) – primarily used		
for public services, offices and shopping malls.	Yes	1
		_
Termovalorizzatori e riciclo dei rifiuti	Low	
Realizzazione di centrali di termovalorizzazione,		
· · · · · · · · · · · · · · · · · · ·	CHP plant fuelled with	
alimentate con energie rinnovabili prodotte	local renewable sources	1
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con	local renewable sources $(\geq 30\%)$ or reduction of	1
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%).	local renewable sources $(\geq 30\%)$ or reduction of waste for infill $(\geq 50\%)$	1
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium	1
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (≥ 70%)	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium CHP plant mainly	1
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (≥ 70%) Definizione di politiche di accompagnamento ed	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium CHP plant mainly fuelled with local	
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (≥ 70%) Definizione di politiche di accompagnamento ed informazione alla popolazione per il corretto riciclo	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium CHP plant mainly fuelled with local renewable sources	1
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (≥ 70%) Definizione di politiche di accompagnamento ed	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium CHP plant mainly fuelled with local renewable sources (\geq 30%) and/or reduction	
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (≥ 70%) Definizione di politiche di accompagnamento ed informazione alla popolazione per il corretto riciclo dei materiali.	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium CHP plant mainly fuelled with local renewable sources (\geq 30%) and/or reduction of waste for infill	
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (≥ 70%) Definizione di politiche di accompagnamento ed informazione alla popolazione per il corretto riciclo dei materiali. Incinerators and waste recycle	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium CHP plant mainly fuelled with local renewable sources (\geq 30%) and/or reduction of waste for infill (\geq 50%)	
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (≥ 70%) Definizione di politiche di accompagnamento ed informazione alla popolazione per il corretto riciclo dei materiali. Incinerators and waste recycle Incineration plants powered by local renewable	local renewable sources $(\geq 30\%)$ or reduction of waste for infill $(\geq 50\%)$ Medium CHP plant mainly fuelled with local renewable sources $(\geq 30\%)$ and/or reduction of waste for infill $(\geq 50\%)$ High	
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (≥ 70%) Definizione di politiche di accompagnamento ed informazione alla popolazione per il corretto riciclo dei materiali. Incinerators and waste recycle Incineration plants powered by local renewable sources produced locally (totally or mainly, with	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium CHP plant mainly fuelled with local renewable sources (\geq 30%) and/or reduction of waste for infill (\geq 50%) High CHP plant mainly	
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (≥ 70%) Definizione di politiche di accompagnamento ed informazione alla popolazione per il corretto riciclo dei materiali. Incinerators and waste recycle Incineration plants powered by local renewable sources produced locally (totally or mainly, with shares not less than 30%).	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium CHP plant mainly fuelled with local renewable sources (\geq 30%) and/or reduction of waste for infill (\geq 50%) High CHP plant mainly fuelled with local	2
 alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (≥ 70%) Definizione di politiche di accompagnamento ed informazione alla popolazione per il corretto riciclo dei materiali. Incinerators and waste recycle Incineration plants powered by local renewable sources produced locally (totally or mainly, with shares not less than 30%). Waste recycle and reduction of waste for infill (≥ 	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium CHP plant mainly fuelled with local renewable sources (\geq 30%) and/or reduction of waste for infill (\geq 50%) High CHP plant mainly fuelled with local renewable sources	
alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (\geq 70%) Definizione di politiche di accompagnamento ed informazione alla popolazione per il corretto riciclo dei materiali. Incinerators and waste recycle Incineration plants powered by local renewable sources produced locally (totally or mainly, with shares not less than 30%). Waste recycle and reduction of waste for infill (\geq 70%).	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium CHP plant mainly fuelled with local renewable sources (\geq 30%) and/or reduction of waste for infill (\geq 50%) High CHP plant mainly fuelled with local renewable sources (\geq 50%) and reduction of	2
 alimentate con energie rinnovabili prodotte localmente (completamente o parzialmente, con quote non inferiori al 30%). Riciclo dei rifiuti prodotti e riduzione dei materiali inviati in discarica (≥ 70%) Definizione di politiche di accompagnamento ed informazione alla popolazione per il corretto riciclo dei materiali. Incinerators and waste recycle Incineration plants powered by local renewable sources produced locally (totally or mainly, with shares not less than 30%). Waste recycle and reduction of waste for infill (≥ 	local renewable sources (\geq 30%) or reduction of waste for infill (\geq 50%) Medium CHP plant mainly fuelled with local renewable sources (\geq 30%) and/or reduction of waste for infill (\geq 50%) High CHP plant mainly fuelled with local renewable sources	2

Solar and photovoltaic panels	Low	0
Use of solar and / or photovoltaic panels. Increase	No use of solar energy	0
exploitation of local energy mix from renewable	Medium	
sources.	Use of solar and	1
	photovoltaic panels (no	1
	smart grid)	
	High	
	Solar and photovoltaic	2
	panels integrated in a	2
	smart grid.	
Characteristics of building materials	Low	0
Use of high-performance materials, Life Cycle	Medium	
Analysis.	Building consumption	1
	according to the	1
	standards set by law	
	High	
	Building consumption	
	lower (at least 20%)	2
	than the standards set by	
	law.	
Score		10

To enlighten the different characteristics of the analyzed case studies, their level of sustainability and strength areas, comparative tables and spider charts have been developed. Aim of the tables and charts is therefore to presents in an easy-to-read language the evaluation processes, improving the results communication. The scores achieved for each area are displayed as colored dots - red, yellow, green - depending on project outcomes and/or presence within the design process of different elements. The assignment of the green color represents not only the attention to a specific aspect of design, but also to the correspondence between project objectives and achievements. The yellow color represents intermediate situations, arising both from the lack of certain aspects in the design phase and/or weak results. The red color represents the complete lack of specific issues related with energy sustainability and/or the failure of the set goals.

For each thematic area a synthesis of the achieved results is reported. Spider charts complete the evaluation, allowing a fast comparison of the different case studies and showing strength and weakness areas of the projects. The charts show in each axe, which represents one of the thematic groups, the score reached by the project.

Photo: Ijburg – Amsterdam and Leidsche Rijn, atelier GROENBLAUW, Madeleine d'Ersu, 2009, Reproduced by Permission

The importance of local polices to create sustainable districts: main European case-studies. COMPACT CITY CONCEPT

Ijburg - Amsterdam and Leidsche Rijn - Utrecht, Netherlands

Policies and actions for promoting urban compactness have been carried on from the City of Amsterdam since 1978, as tool to contrast the sprawl phenomena. The development and reuse of lands close – or into – the border of the city has thus been the main results of these policies.

The district of Ijburg, an on-going project of 430 hectares spread over six artificial islands, partially newly realized and partially former industrial docs, is located in the heart of the city and close to the

Compact city and mix of functions		Main results
High density of residential - working places	00	Brown field renovation, reduction of the
Brown field reuse	00	mobility-related energy. Technical and economical feasibility for
Mix of functions	00	district heating.
Public services	00	2
Score	8/10	
Solar gain and wind design		
Passive solar design	0 😑 0	Sun radiation in accordance with the standards imposed by law: no further use
Use of solar energy (active/passive)	• 0 0	of solar energy.
Microclimate control	• 0 0	
Energy production from wind	• 0 0	
Score	1/10	
Mobility		
Improvment of accessibility and connections	0 0 \bullet	Reduction of the numbers of car lots
Walkability	00	/apartment, creation of pedestrian areas. Public transport and bicycle-pedestrian
Urban grid and street design	00	lanes increased within the district and to
Effectiveness of the policies among the residents	0 😑 0	the city.
Score	9/10	
Green and water design		
Microclimate control	• 0 0	Connection of the new development with the natural areas by green corridors
Green infrastructures	00	and green infrastructure.
Water management	• • •	Biotopes protection.
Energy production (biomass, purification)	• 0 0	Green areas increased to 16 smg /inhabitants.
Score	2/10	
Technologies		
District heating and CHP plants	$\circ \circ \bullet$	Decrease of building energy demand.
District cooling	• 0 0	
Energy from waste (incineration)	• 0 0	
Solar and photovoltaic panels	• 0 0	
Building materials and energy performances	000	
Score	2/10	
Global score	22/50	

central station. The green areas will occupy a surface of 53 hectares, while 40 hectares will be dedicated to commercial and office functions, aiming to create a new autonomous centre, although strongly connected with the city.

Launched by the City Council in 1997 to respond to the increasing need of new dwellings, in 2025 – forecasted date of the conclusion – the district will have eighteen thousands apartments and forty-five thousands inhabitants. To improve the social mix, 30% of the dwellings will be rented out at low fares, supporting young and new families, while the others will follow market prices.

The mobility needs of the district are also supported by an extension of the

The design concept is primary based on compactness of the built environment (60 to 100 units/hectare, plot usage 42-50%) and conservation/creation of green areas and green infrastructures. Public transport, services. and schools are equally distributed in the area, while commercial and offices are located at the transport nodes, maximizing the accessibility.

Due to the dimension of the district, the construction of new infrastructure lanes and bridges, both pedestrian and driveway, assumes a key role for create connections within the borough and to the city.

public transport net. Following a policy of car trips reduction, adopted at the city level, the public functions are connected through bicycle lanes and pathways, while car speed is reduced to 30 km/h, and the ratio parking place/unit is decrease to 1.08-1.25 (half of the average value of the city).

The building energetic standards are based on the Environmental Protection Act, and tested using the indicators of EPC evaluation. All the buildings are going to be connected to the district heating.

Concepts of urban densification, localization of main functions nearby transport nodes, predominance of bicycles and pedestrian connections, and conservation of green areas are leading principles also for the new development area of Leidsche Rijn, located in Utrecht. The development site, which will contain 75% of the expansions of the entire region, is strongly connected with the Randstad Green Heart, enhancing the biodiversity of the project.

The energy reduction is achieved through district heating and low energy buildings, reuse of rainwater for non-drinking purposes, reduction of car trips by new train stations, busses and commuting parking areas.

SOLAR DESIGN AT DISTRICT SCALE Linz-Pichling, Austria

Photo: Linz Solar City, Esther Vidal Bartoll, 2011. Reproduced by Permission

The project of solarCity, started in 1992 with the definition of the masterplan and concluded in 2005, has among its aims the creation of a research pole for energy solutions in the building sector. Funds coming from the European Union, which contributed to the realization of the district, influenced the choice of strong integration between development and energy.

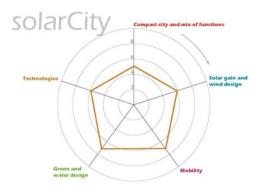
A general agreement to the main focuses of the project – economic growth, social progress and ecological balance – and the set up of a management team are the main factors that contributed to the success of the initiative. Added value of the development is related with the public ownership of the land, which avoided conflicts between public choices and developers needs. Important international architects – such as Norman Foster, Richard Rogers, Thomas Herzog e Norbert Kaiser, who constituted the READ group - Renewable Energies in Architecture and Design – were part of the design group, increasing the international interested on the area.

Solar energy has been a guide parameter both for urban and building design, that followed the guidelines of the *European Charter for Solar Energy in Architecture and Urban Planning* (1996). Quality agreements were stipulated between municipality and construction companies, setting the reference values for energy production and maximum energy demand for each building. As results, all the constructions have a low energy design and high resistance against overheating during summer time, while solar panels provide energy supply. The urban grid has been defined in order to take full advantage of the solar energy, providing equal amount of solar light to all the apartments and avoiding shadowing. Geomorphology of the site and natural characteristics were taken into account during the planning process, and integrated in the urban grid. Strong correlations between buildings orientation, height, glazing surfaces in the south façades, and choice of the materials contributed to enhance the energy sustainability of the project.

In this project. the densification has been used as mean for increase the heat island effect, since thermal losses play an important role in the vearly energy balance with cooling compared needs, due to the local climatic conditions.

As for the other case studies, social integration, sustainable mobility, and functional mix were integrated in the planning process.

Green areas and infrastructures were designed to reduce the anthropic pressure on nature and conserve the biodiversity. Moreover, they have a water filtering function, being connected


Improvement of residential - working places Improvement of excellations of a new setting website excellations of a new setting website excellation of a new setting of the mobility-related energy. Solar gain and wind dezign Solar and wind dezign Passive solar design Solar of a new setting of the district. Energy production from wind Solar of the anitary hor water produced with solar panels, as well as 1/3 of the whole energy demand of the district. Energy production from wind Solar of the new development with the natural areas by green condors Microclimate control Solar of the policies among the residents Walkability Solar on different exceeded now the district. Microclimate control Solar and water design Microclimate control Solar and photovotation purpoint enduced to a set used as agricultural territice. Connection of the new development with the natural areas by green condors. Connection of the new development with the natural areas by green condors. Rereng production (biomass, purification	Compact city and mix of functions High density of residential - working places	00.	Main result: Technical and economical feasibility for
Mix of functions Creation of a new urban center, reduction of the mobility-related energy. Public services 5/10 Score 5/10 Solar gain and wind design 0 Passive solar design 0 Use of solar energy (active/passive) 0 Microclimate control 0 Energy production from wind 0 Score 6/10 Mobility 0 Improvment of accessibility and connections 0 Walkability 0 Urban grid and street design 0 Score 7/10 Green and water design 0 Microclimate control 0 Green and water design 0 Microclimate control 0 Score 7/10 Green and water design 0 Microclimate control 0 Score 7/10 Technologiss 0 District cooling 0 Energy production (biomass, purification) 0 Score 7/10 Technologiss 0 District cooling <td< th=""><th>5 , 51</th><th></th><th></th></td<>	5 , 51		
Public services Generation Score 5/10 Score 6/10 Multicity Generation Improvement of accessibility and connections Generation of the public services with bicycle-pedestrian lanes. Connection of the new development with the natural areas by grotection areas increased. Runoff reduction and use of rain water for non-drinking purpose. Severe 7/10 Green and water design Generation of the new development with the natural areas by grotection areas increased. Runoff reduction and use of rain water for non-drinking purpose. Severe 7/10 Score 7/10 Technologies Generating and CHP plants District cooling Generation mediate design Building materials and energy performances Genergy from waste (incineration) Score			
Score 5/10 Solar gain and wind dezign Building's energy consumption reduced to 38 KWr/srm, Passive solar design 0 Use of solar energy [active/passive] 0 Score 50% of the sanitary hot water produced with solar panets, as well as 1/3 of the whole energy demand of the district. Energy production from wind 0 Score 6/10 Mobility 0 Improvment of accessibility and connections 0 Main and street design 0 Score 7/10 Green and water design 0 Microclimate control 0 Score 7/10 Green and water design 0 Microclimate control 0 Score 7/10 Connection of the new development with the natural areas by green condoors and green infrastructure. Water management 0 Energy production (biomass, purification) 0 Score 7/10 Technologies 7/10 District cooling 0 Energy production (biomass, purification) 0 Solar and photovotak (anels) 0 Building materials and energy performances 0 Sore 6/10			tion of the mobility-related energy.
Solar gain and wind decign Building's energy consumption reduced to 33 KWh/simg. Solar gain and wind decign Is 33 KWh/simg. Passive solar energy (active/passive) Is 33 KWh/simg. Solar energy (active/passive) Is 33 KWh/simg. Sore 6/10 Building's energy consumption reduced to 33 KWh/simg. Sofe the sanitary hot wates produced through with solar panets, as well as 1/3 of the whole energy demand of the district. Energy production from wind Mobility Improvment of accessibility and connections My and add street design Increase of public transports and bicycle-pedestrian lanes. Connection of the public services with bicycle-pedestrian lanes. Effectiveness of the policies among the residents Score 7/10 Green and water design Increase of public transports and bicycle-pedestrian lanes. Energy production (biomass, purification) Improvement of accessibility and connections Score 7/10 Connection of the new development with the natural areas by green corridors and green infrastructure. biotoper protection areas increased. Water management Improvement used as agricultural fertilization. District cooling Improvement and connection. District cooling Improvement and connection. Building materials and energy performances Improvement accession and green consumption reduced to 36 kWh/sem.			
Passive solar design 0 to 33 fwh/ymg. Use of solar energy (active/passive) 0 to 33 fwh/ymg. Windows of the solar panels, as well as 1/3 of the heritic. Energy production from wind 0 Score 6/10 0 what an ange of the solar panels, as well as 1/3 of the the solar panels, as well as as 1/3 of the the solar panels, as well as as 1/3 of the the solar panels, as well as as 1/3 of the the solar panels, as well as as 1/3 of the the solar panels, as as as asolar panels, as well as as 1/3 of the the sola	score	5/10	
Passive solar design 0 to 33 kVm/ymm; Use of solar energy (active/passive) 0 to 33 kVm/ymm; Windows and the solar and the solar energy (active/passive) 0 to 33 kVm/ymm; Sofe of the sonariaty hot water produced with solar energy (active/passive) 0 to 33 kVm/ymm; Sofe of the sonariaty hot water produced with solar energy (active/passive) 0 to 33 kVm/ymm; Sore 6/10 0 theat island effect: maximized through urban design: reduction of heat energy consumption during winter. Mobility 0 0 theat energy (active/passive) 0 Microcitian constructions 0 0 theat energy (active/passive) 0 Mobility 0 0 0 theat energy (active/passive) 0 Mobility 0 0 0 theat energy (active/passive) 0 theat energy (active/passive) 0 Walkability 0 0 0 0 theat energy (active/passive) 0 theat energy (active/passive) 0 0 theat energy (active/passive) 0 theat energy (active/passive) theat energy (active/passive) theat energy (active/passive) theat energy (active/passive) <	Solar oain and wind dorion		
Use of solar energy [active/passive] S0% of the sanitary hor water produced with solar panels, as well as 1/3 of the well as 1/3 of the with solar panels, as well as 1/3 of the well as 1/3 of		$\cap \cap \bullet$	
Microclimate control with isolar panels, as well as 1/3 of the whole energy demand of the district. Energy production from wind Score 6/10 Mobility Increase of public transports and bicycle-pedestrian lanes. Mobility Improvment of accessibility and connections Multability Improvment of accessibility and connections Walkability Connection of the public transports and bicycle-pedestrian lanes. Connection of the public services with bicycle-pedestrian lanes. Score 7/10 Green and water design Microclimate control Green infrastructures Water management Energy production (biomass, purification) Score 7/10 Technologies District cooling Energy prom waste (incineration) Salar and photovoltaic panels Building materials and energy performances Score	-	~ ~ ~	
Energy production from wind Score 6/10 Mobility Improvment of accessibility and connections Improvment of accessibility and connections Walkability Urban grid and street design Effectiveness of the policies among the residents Score 7/10 Green and water design Microclimate control Green and water design Water management Score 7/10 Technologies District cooling District cooling Building materials and energy performances Score 6/10	351 71 1	~ ~ •	
Score 6/10 urban design: reduction of heat energy consumption during winter. Mobility Improvment of accessibility and connections Increase of public transports and bicycle-pedestrian lanes. Walkability Improvement of accessibility and connections Improvement of accessibility and connections Improvement of accessibility and connections Walkability Improvement of accessibility and connections Improvement of accessibility and connections Improvement of accessibility and connections Walkability Improvement of accessibility and connections Improvement of accessibility and connections Improvement of accessibility and connections Improvement of accessibility and connection of the public services with bicycle-pedestrian lanes. Effectiveness of the policies among the residents Improvement of the new development with the natural areas by green ornidon and green infrastructure. Biotopore for non-drinking purposes. Connection of the new development with the natural areas by green ornidon and green infrastructure. Biotopore for non-drinking purposes. Greeen and water design Improvement of accession and green infrastructure. Biotopore for non-drinking purposes. Water management Improvement of accession and green infrastructure. Biotopore for non-drinking purposes. District cooling Improvement of accession and photovoltaic panels District cooling Improvement of accession and photovoltaic panels			
Mobility Increase of public transports and bicycle- yedestrian lanes. Walkability Increase of public transports and bicycle- yedestrian lanes. Urban grid and street design Increase of public transports and bicycle- yedestrian lanes. Effectiveness of the policies among the residents Increase of public transports and bicycle- yedestrian lanes. Sore 7/10 Green and water design Increase of public transports and bicycle- yedestrian lanes. Microclimate control Increase of the policies among the residents Green infrastructures Increase increased. Water management Increase increased. Energy production (biomass, purification) Increase with district. Soare 7/10 Technologies Instrict tealing and CHP plants District tooling Increase Building materials and energy performances Increase Soare 6/10	55 1		urban design: reduction of heat energy
Improvment of accessibility and connections Increase of public transports and bicycle- pedestrian lanes. Walkability Improvement of accessibility and connections Improvement of accessibility and bicycle- pedestrian lanes. Walkability Improvement of accessibility and street design Improvement of the public services with bicycle-pedestrian lanes. Effectiveness of the policies among the residents Improvement of the public services with bicycle-pedestrian lanes. Score 7/10 Green and water design Improvement of the new deselopment with the natural areas by green coridor and green infrastructure bictoper protection areas increased Runoff reduction and use of rain wate for non-drinking purposes. Score 7/10 Technologies Improvement function Solar and photovoticic panels Building materials and energy performances Improvement of the energy formances Score 6/10	score	910	consumption during winter.
Improvment of accessibility and connections Increase of public transports and bicycle- pedestrian lanes. Walkability Improvement of accessibility and connections Improvement of accessibility and bicycle- pedestrian lanes. Walkability Improvement of accessibility and connections Improvement of accessibility and bicycle- pedestrian lanes. Walkability Improvement of accessibility and connections Improvement of accessibility and bicycle- pedestrian lanes. Score 7/10 Green and water design Improvement of accessibility and bicycle-pedestrian lanes. Microclimate control Improvement of accessibility and bicycle-pedestrian lanes. Green infrastructures Improvement of accessibility and bicycle-pedestrian lanes. Water management Improvement of accessibility and use of rain wate for non-drinking purposes. Score 7/10 Technologies Improvement propelied with biomass. District cooling Improvement propelied with biomass. Solar and photovotaic panels Improvement of accessibility and propelied with low as a biuliding materials and energy performances Improvement of accessibility and bick of the energy for accessibility and bick of the anergy for acc	Mobility		
Walkability	-	00	
Urban grid and street design Connection of the policy services with big/depedstrian lanes. Effectiveness of the policy services with big/depedstrian lanes. Dis/depedstrian lanes. Score 7/10 Green and water design Connection of the new developmen with the natural areas by green corridoro and green infrastructures Connection of the new developmen with the natural areas by green corridoro and green infrastructure. Green and water design Connection and green infrastructure. Connection and green infrastructure. Water management Connordrinking purposes. Sewage water used as agricultural fertilizer. Score 7/10 Sewage water used as agricultural fertilizer. Technologies ChtP power plant propelled with biomass purification) Sewage water used as agricultural fertilizer. District cooling Connection and green and photovotatic panels Solar and photovotatic panels Solar and photovotatic panels Building materials and energy performances Solar Store Solar Solar	, ,		
Effectiveness of the policies among the residents Green and water design Microclimate control Green infrastructures Green infrastructures Green infrastructures Green infrastructure Microclimate control Green infrastructure Green infrastructure	Urban grid and street design		
Score 7/10 Green and water design Connection of the new developmen with the natural areas by green corridor and green infrastructure. biotoper for end infrastructures Connection of the new developmen with the natural areas by green corridor and green infrastructure. biotoper protection areas increased. Runoff reduction and use of run water for non-drinking purpose. Green infrastructures Image: Connection of the new developmen with the natural areas by green corridor. and green infrastructure. biotoper for non-drinking purpose. Water management Image: Connection of the new developmen water used as agricultural femili zer. Score 7/10 Technologies District cooling District cooling Image: Consumption reduced to Solar and photovoltaic panels Building materials and energy performances Image: Consumption reduced to Solar and photovoltaic panels Score 6/10		~ ~ ~	bicyclopedestrianienes
Green and water design with the natural areas by green corridors Microclimate control and green infrastructures Runoff reduction and use of rain water Runoff reduction and use of rain water Sewage water used as agricultural fertilizer. Technologies Sore CHP power plant propeled with biomass purification) Solar and photovoltaic panels Sore Sore Sore 6/10	1 2		
Microclimate control Green infrastructures Water management Energy production (biomass, purification) Score 7/10 ChP power plant propelled with biomass District cooling Energy from waste (incineration) Solar and photovoltaic panels Building materials and energy performances Score 6/10 With Phate and Structures With Phate Phates Protection areas increased Runoff reduction and use of rain water for non-drinking purpose. Sewage water used as agricultural femili zer. ChP power plant propelled with biomass Photovoltaic panels Building materials and energy performances Score 6/10	Groop and water design		
Green infrastructures protection areas increased Runoff reduction and use of ran wate Sewage water used as agricultural fertili Sewage water used as agricultural fertili Sevage water used as agricultural fertili Technologies CHP power plant propelled with biomass District cooling CHP power plant propelled with biomass protection and use of ran wate sevage water used as agricultural fertili sevage water used as agricultural fertili Sevage water used as agricultural fertili Building materials and energy performances Store 610 	-	00	
Water management Charlen production and use of rain water for non-drinking purposes. Energy production (biomass, purification) Sevee Score 7/10 Technologies District cooling District cooling Charlen properties Softe of the energy (17%): supplies Softe of the energy (17%): supplies Softe of the energy (2000) and photovoltaic panels Building materials and energy performances Sore		~ ~ ~	
Energy production (biomass, purification) Sewage water used as agricultural fertilizer. Score 7/10 Technologies District theating and CHP plants District cooling Sewage water used as agricultural fertilizer. Score Sewage water used as agricultural fertilizer. Solar and photovoltaic panels Sewage water used as agricultural fertilizer. Building materials and energy performances Sewage water used as agricultural fertilizer. Score 6/10			
Score 7/10 zer. Technologies District heating and CHP plants CHP power plant propelled with biomas District cooling ChP power plant propelled with coloration Energy from waste (incineration) ChP power plant propelled with coloration Solar and photovoltaic panels ChP power plant propelled with coloration Building materials and energy performances ChP power plant propelled with biomas Score 6/10	-		
Technologies CHP power plant propelled with biomson District heating and CHP plants Image: Chromosome plant propelled with biomson District cooling Image: Chromosome plant propelled with biomson Energy from waste (incineration) Image: Chromosome plant propelled with biomson Solar and photovoltaic panels Image: Chromosome plant propelled with biomson Building materials and energy performances Image: Chromosome plant propelled with biomson Score 6/10		• • •	
District heating and CHP plants District cooling District cooling Chr P power plant propelled with biomass District cooling Chr P power plant propelled with biomass District cooling Chr P power plant propelled with biomass Chr P power plant propelled with biomass District cooling Chr P power plant propelled with biomass Chr P power plant propelled with biomass District cooling Chr P power plant propelled with biomass Chr P power plant plant propelled with biomass Chr P power plant propelled with biomass Chr P power plant pl	score	1/10	
District cooling Energy from waste (incineration) Solar and photovoltaic panels Building materials and energy performances Score 6/10	2		
District cooling District cooling Energy from waste (incineration) Solar and photovoltaic panels Building materials and energy performances Score 6/10	District heating and CHP plants	· · · •	
Solar and photovoltaic panels Building materials and energy performances Score 6/10			
Building materials and energy performances		• 0 0	
Score 6/10		00	36 kWh/sqm.
	Building materials and energy performances	00	
Global score 31/50	Score	6/10	
	Global score	31/50	

with the local purification plant. At the same time, a closed cycle water system was developed, creating separated pipelines for sewage and rain water, and reusing the organic material in the agricultural sector. Green areas play thus an important role for groundwater regeneration and filtering.

The area is connected with the district heating net of the city, the integration between new development and existing net was undertaken since the beginning of the planning process, reducing cost and technical problems. At the same time, energy losses along the pipes were reduced by 8% (measured from the plant to the flat), thanks to better isolation materials. In 2004 a new biomass power plant³ was installed, supplying 17% of the annual heat demand. Thanks to the CHP plant (combined heat and power plant) economic benefits (i.e. cost reduction and environmental quality improvements) were achieved. Additionally, 50% of the warm water demanded is produced by 3.500 m^2 of solar and photovoltaic panels.

 $^{^{3}}$ 1/3 biomass and 2/3 oil and gas.

Linz, innovative in its concept of solar design at district level, is part of the Austrian social housing process of low energy buildings construction. The nowadays average energy demand is 36 kWh/m², lower than 44 kWh/m² initially set from the project.

These results show the importance of a clear design

strategy, both at urban and building scale, for reducing the energy demand. The global development costs amount to 190 million of euro: 125 for residential buildings and public services, 65 for infrastructures. The European Union General Directorate XII for Research and Development funded the project with 600 thousands euro. Furthermore, the City of Linz subsided solar system in public buildings with 720 €/ m², plus 150 €/ m² for solar panel.

Vauban-Freiburg, Germany

Photo: Der Freiburger Stadtteil Vauban: Foto: Ingo Schneider, 2009. Reproduced by Permission.

During the 70s the City of Freiburg started the first actions for promoting sustainability in the urban planning system, aiming to reduce car trips while increasing public transports. The concept of "energetic planning" appeared in the middle of the 80s when, after strong public oppositions against new nuclear power plants, the city launched an holistic energy policy, based on cross cooperation between environmental organizations, economic sector and researchers. This cooperation aimed to develop energy solutions based on solar technologies and create a leadership role for the region of Freiburg (also called SolarRegion Freiburg). Energy saving, new technologies and renewable sources are the three points of the energy policy of the city. Final goal is to reorient the energy production towards sustainability and reduce gas emissions of 25% during 1992-2010.

Different action for increasing the urban sustainability were undertaken, coordinated by a comprehensive plan for energy saving and production. Existing buildings were retrofitted and the isolation improved, while the new constructions had to increase the energy efficiency by one third comparing with the standards for eco-buildings. Cost analyses showed an increasing of 3% of the construction prices, which is compensate by 30% reduction of CO_2 emissions.

Projects correlated with solar technologies were launched, testing the applicability at the urban scale of solar and photovoltaic panels, solar cooling, and passive solar building.

The possibility to extensively apply solar solutions is also related to a favorable geographic localization of the city (south of Germany), which avail of 1.800 solar hours per year⁴, equal to an annual solar radiance of 1.117 kWh/m^2 . This value is lower than the one available at higher latitude (i.e. United Kingdom), which enlighten and enforce the opportunities coming from solar technologies.

⁴ The Solar Economic Factor

⁽http://www.fwtm.freiburg.de/servlet/PB/menu/1174647_l2/index.html)

Thanks to the key role of the sun in the management of the City, large part of the industry sector is connected with solar technologies, and there are well established agreements between the industries and the research centers here located.

dedicated Α web-site. Forum SolarRegion Frei-"virtual" burg, is а meeting place where citizens can obtain information related with solar design, technologies and researches.

Other initiatives adopted by the municipality are related with reduction of car trips, started in the 80s

Compact city and mix of functions		Main results
High density of residential - working places	00	Technical and economical feasibility for
Brown field reuse	00	district heating. Creation of a new urban center, reduc-
Mix of functions	0 😑 O	tion of the mobility-related energy.
Public services	00	
Score	8/10	
Solar gain and wind design		
Passive solar design	00	Solar houses: 15 kWh/mq energy con- sumption.
Use of solar energy (active/passive)	00	Sanitary hot water produced by solar
Microclimate control	00	panels (500 sqm). Electricity produced by photovoltaic
Energy production from wind	• 0 0	panels (1.200 sqm).
Score	5/10	
Mobility		
Improvment of accessibility and connections	00	20% of all trips by public transport, and 64% by non-motorized vehicles.
Walkability	00	46 % of the inhabitants are car-sharing
Urban grid and street design	00	members, private cars reduced by 40%.
Effectiveness of the policies among the residents	00	
Score	9/10	
Green and water design		
Microclimate control	0 😑 O	Biotopes protection areas created, incre-
Green infrastructures	00	ase of leisure green areas. Runoff reduction and use of rain water
Water management	00	for non-drinking purposes.
Energy production (biomass, purification)	00	Biogas from sewage water,
Score	6/10	
Technologies		
District heating and CHP plants	00	CHP power plant, optimization of the
District cooling	00	recycle system. Building energy consumption reduced to
Energy from waste (incineration)	ōŏŏ	65 kWh/sqm.
Solar and photovoltaic panels	000	
Building materials and energy performances	ŏŏ•	
Score	8/10	
Global score	36/10	

with polices for increasing public transports; waste sorting and reuse of organic materials; reduction of land consumption and protection of 42% of the green fields.

In 1993 the City of Freiburg launched a renovation process on the area of Vauban, former army district of 38 hectares located at 3 kilometres from the city centre. The development was based on the idea of ecological, social, economic, and cultural sustainability, able to promote a different quality of life and long term progress. Thanks to public ownership of the land, it was possible to define the characteristics of the project without any pressure from the private sector, and promote actions related with urban density control, rigid energetic standards for building, and design of a car-free development.

Public participation of the inhabitants-to-be in the design process is considered one of the most important characteristics of the project. The association Forum Vauban was established in 1995 with the aim of constitute a link between people, designers and administrators, helping not only during the development phase, but also with the management processes,

increasing in the population consciousness level around urban sustainability. The Forum Vauban, subsided by the European Union, closed in 2004 due to lack of funds. During the years of activity, it helped to promote among inhabitants and workers (5,000 and 600, respectively) energy measures and sustainable style of life.

Guide principles of the project are connected with functional mix; partition of the land in small plots, afterwards developed by local small scale construction companies; involvement of the inhabitants in the design phases; conservation of the existing biotopes and natural elements; mobility based on public transport and pedestrian-cycle; CHP plant and co-generation closeby the development, in order to reduce thermal losses; low energy houses and passive houses; renewable materials; solar energy systems integrated in the buildings; supporting actions for increase social life, services and commerce.

The building density identified as optimal, both for technical supplies and public services provision, is 90-100 apartments/hectares.

The building energetic standard is 65 kWh/m², lower than the level of 100 kWh/m² set by law, which was already restrictive if compared with the previous

consumption standard of 200 kWh/m². Hundred apartments have also been realized following the principles of passive house, with consumption of 15 kWh/m² and no need of extra heating, except for few weeks during winter time.

A district heating system covers the all area. The needed energy is produced through a cogeneration plant powered by woodchips, while solar and photovoltaic panels (500 and 1.200 m^2 , respectively) contribute to produce hot water.

Thanks to green roof, permeable surfaces and reuse of waste water, the district has water autonomy quote of 80%. Biogas for cooking purpose is produced by sewage treatment plant, while the purification process is completed by using phytodepuration. Waste is collected into different

fractions by the inhabitants, and the organic waste is used to produce biogas and fertilizers.

Reduction of car ownership, improvements in public transports and pedestrian-cycle trips are other key factors for decrease the energy consumption and environmental impacts. In particular, car ownership was reduced by designing Vauban as a car-free development, dipping the ratio parking plot/unit to 0.5. The only collective garage is located at the entrance of the district, and the rent for a parking plot is higher than the city average. Thanks to these measures, it has been possible to reduce by 40% car ownership, which corresponds to a ratio car/inhabitant of 1/4 - 1/5.4.

Average yearly commuter trips with public transports are 20% of the total. 64% of the all journeys use not motorized transports. This value can be explained if distance is taken into account, 84% of the trips are indeed shorter that 6 km, which enhance the competitiveness of bicycles. 46% of the residents are car-sharing members, which covers 6% of the all trips. Private cars are used for 16% of the journeys, mainly for leisure purposes (Scheurer, 2008).

The annual energy saving or *CER* - *cumulative energy requirements* of the district were calculated by Öko-Institut of Freiburg in 28 GJ, corresponding to 2.100 tons of CO₂ equivalent.

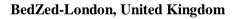


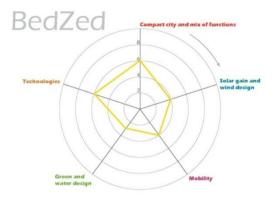
Photo: Beddington Zero Energy Development (BedZED) London, Tom Chance from Peckham, 2007 Reproduced by Permission.

No.9, Year 2017

Geo Information

Beddington Zero Energy Development – BedZed, built in London in 1999, is focused on the creation of a new way of life in the urban context, having zero consumption of fossil fuel and high quality standards.

The neighborhood is realized on a former brown field, and it is characterized by high density, energy autonomy, green areas and green belt. According with the aim of the designers, district should the constitute easy-toan reproduce and economically competitive urban model


The reference morphological concept is the garden city, in which green, technologies and energy are integrated to the idea of traditional outskirt development to reduce the ecological footprint. The chosen building density is 100 units/hectares (excluding 18 units whit

Compact city and mix of functions		Principali risultati raggiunti
High density of residential - working places	00	Technical and economical feasibility for district heating.
Brown field reuse	000	asurer nearing.
Mix of functions	00	
Public services	• 0 0	
Score	6/10	
Solar gain and wind design		
Passive solar design	00	Global energy consumption reduced by
Use of solar energy (active/passive)	00	90%. 11% of the energy produced by photo-
Microclimate control	• • •	voltaic panels produce (777 sqm).
Energy production from wind	00	
Score	4/10	
Mobility		
Improvment of accessibility and connections	0 🔴 0	65% of the yearly kilometers by cars cut
Walkability	0 🔴 0	off thanks to efficient public transport system.
Urban grid and street design	0 😐 0	system.
Effectiveness of the policies among the residents	00	
Score	4/10	
Green and water design		
Microclimate control	• 0 0	Sprawl controlled by green belt, green areas increased to 26 sgm/inhabitants.
Green infrastructures	0 🔴 0	Runoff reduction and use of rain water
Water management	0 🔴 0	for non-drinking purposes.
Energy production (biomass, purification)	0 🔴 0	Sanitary water consumption reduced by 60%
Score	3/10	00%.
Technologies		
District heating and CHP plants	00	11% of the electricity produced with
District cooling	• 0 0	solar technologies. Energy consumption reduced by 3% by
Energy from waste (incineration)	• 0 0	Increasing the isolation of walls.
Solar and photovoltaic panels	$0 0 \bullet$	
Building materials and energy performances	00	
Score	6/10	
Global score	23/50	

mixed function dwelling/work) and 200 job places/hectares; total surface is 1.7 hectares. The density is higher than normal sub-urban residential areas, and it was defined to obtain higher economic, environmental, and energetic benefits. At the moment roughly 250 people are living in BedZed.

Three main target groups – morphological design and social services, urban and financial sustainability, environmental impact reduction – were defined at the beginning of the process, guiding the development and design.

Urban and social mix, optimal building density for services provision, wind and solar design, car trips reduction and promotion of an environmental sustainable life-style are the main factors of the first group. The second target group includes living reduction by using cost renewable energies, energy saving thanks to a different

urban design, and land value increase. The actions for reaching the fossil fuel target are contained in the third group, in particular passive design, reduction of water consumption (-50%), creation of distributed energy resources, and use of recycled building materials.

As for the other districts, public participation was seen as important element for improve the design and achieve better results.

Energy demand has been reduced by focusing on solar design, both at urban and building scale, and realizing constructions with high thermal performance. Thanks to that, the district energy demand is 90% lower than similar areas realized in the same period. A biomass powered plant produces, besides other renewable sources (i.e. solar and photovoltaic panels), the energy needed by the inhabitants.

The mix of functions allowed a car trips reduction of 65% on the total amount of driven kilometres, although car-sharing has not been successfully integrated in the district.

According with the data released in 2003 by the English agency BioRegional, in charge of the monitoring, the project showed better results than expected, in particular related with the use of water and fossil fuel. Due to technical problems, related with the installed experimental technologies, heating and cooling did not achieve the expected performances.

After monitoring the global performance of the project in 2007, it was shown that benefits directly related with architectural solutions contributed only for 3% of the total reduction, while significant role is played by urban design and DER systems. Generally, the district –compared with others realized in

the same period – is 16% more energy efficient, 30% more water saving and reduced of 40% the CO_2 emissions.

Thanks to the achieved results, the houses are valued 15% more than the surroundings.

WIND DESIGN AND GREEN AREAS

Bo01- Malmö, Sweden

Photo: Bo01 - Malmö stad, Malmö Townplanning Office, 2011, Reproduced by Permission.

Built on a former industrial and harbor area, Bo01 represents a new economical and development phase of the city of Malmö, which is moving from maritime and industrial sectors to services (bio-tech companies, IT companies) and high education (Malmö University). Moreover, with the completion of the Øresund Bridge in the year 2000, one of the major Trans-European Transport Networks (TEN-T Priority Axes and Projects - Øresund fixed link), new opportunities for economic exchange with the metropolitan area of Copenhagen have been open up.

The Swedish tradition of eco-villages is here applied at the urban scale, focusing on technologies and built environment design for energy production and consumption reduction. In order to combine built environment quality, natural aspects and energy production, a Quality Programme was developed by the City of Malmö, with the contribution of various experts. Aim of the programme was to constitute a guideline for the design and evaluation of the quality level of the new buildings. Eight focus areas have been defined by the Quality Programme, related with planning a dense neighborhood, provided with services and leisure activities; decontamination of the soils; energy system supplied with 100% of local renewable sources; urban waste management; alternative forms of transportation, as well as reduction of travel needs (telecommuting or teleworking); increase of bio-diversity within the compact city, in particularly through the inclusion of green areas and green infrastructures; social integration thanks to implementation of different housing solutions.

Morphologic and typological aspects were studied to protect the settlement from the winds blowing from the Öresund strait. A row of seven floors high buildings – higher than all the other constructions – faces the sea and constitutes an artificial barrier that prevents the occurrence of turbulences along the streets, protecting both houses and public spaces. Thanks to that, the microclimate of the whole district significantly improved, reducing the heat energy demand of the buildings.

The transport net was designed for decrease the dependence on cars and, thus, the impact on air quality. Among the different actions the most important are promotion of pedestrian and cycle paths, public transport (the distance between accommodation and bus stop is not more than 300 meters), and discouragement of car ownership. This goal was achieved by reducing the ratio parking plot/units to 0.7. Moreover, the city has launched a campaign to promote hybrid vehicles, applied also at the public transport vehicles.

The promotion of biodiversity is one of the distinguishing features of the project and influenced both the design of open spaces and the buildings materials. The majority of the constructions have green roofs and/or green walls, used also for thermal balance. Moreover, different habitats and biotopes have been created, while green and wet areas contribute to purify rainwater and melted snow before their release in the sea.

A system called Green Area Factor, imported and adapted from previous experiences in Germany, was introduced to ensure that all the developers reach the needed would standards for supporting biodiversity and environmental high profile. Approval of the project was subjected to the fulfillment of actions for enhance and strength the biodiversity in private green spaces and courtyard. A list of 35 "Green points" was defined by the Municipality, from which the developers private could freely choose (at least) ten of them, corresponding to the actions to undertake. The green space factor, measured on the whole development

Compact city and mix of functions		Main results
High density of residential - working places	00	Technical and economical feasibility for
Brown field reuse	00	district heating: reduced heat energy consumption.
Mix of functions	00	Site renovation and soil decontamina-
Public services	00	tion.
Score	7/10	
Solar gain and wind design		
Passive solar design	00	Winter microclimate control through a barrier of buildings: reduced speed and
Use of solar energy (active/passive)	$\circ \circ \bullet$	changed wind direction.
Microclimate control	00	Solar energy production by solar (1,400
Energy production from wind	00	sqm) and photovoltaic panels (120 sqm). 2 MW wind turbines of (6,300 MW/year)
Score	7/10	2 mm mind tarbines of [0,500 mm/ jear]
Mobility		
Improvment of accessibility and connections	0 🔴 0	0.7 car lots / unit.
Walkability	00	New connections to the city by public transport and pedestrian/bicycle lanes.
Urban grid and street design	00	High walkability index in the district.
Effectiveness of the policies among the residents	0 🔴 0	
Score	8/10	
Green and water design		Biotopes protection areas and increased
Microclimate control	• 0 0	biodiversity in the district.
Green infrastructures	00	Heat pumps for heating and cooling. Runoff reduction and use of rain water
Water management	00	for non-drinking purposes.
Energy production (biomass, purification)	00	District sewage treatment plant.
Score	9/10	
Technologies		Biogas from waste as fuel for public tran-
District heating and CHP plants	00	sports.
District cooling	00	Natural caves used as water storages for
Energy from waste (incineration)	00	heat pumps. Solar and photovoltaic panels.
Solar and photovoltaic panels	00	Reduction of energy demand not achie-
Building materials and energy performances	• 0 0	ved for first phase buildings, the results have been used for improvements in the
Score	8/10	other phases.
Global score	39/50	

plot, has values ranging from 0.0 to 1 in relation with the type of surface. For residential areas the green space factor cannot fall below the target level of 0.5. This value is calculated by multiplying the area of each surface type for the correspondent factor, summing all the values obtained, and then dividing by the courtyard area. To ensure variety and encourage higher quality, the points assigned to each action are weighted with the functionality of the green area.

Construction companies had to submit plans for the maintenance and management of the green areas, while the landscape project and the subsequent planting of trees was developed since the early stages of the expansion under the supervision of Malmö Green Department. The result of this operation led to a wide variety of environments, including small lakes, water retention basins, different natural habitats and green corridors between parks and gardens.

Environmental initiatives were funded through a Local Investment Programme (25 million of euro) and European Union funds (roughly 2 million of euro).

No.9, Year 2017

The Green space Factor, after the pilot experience of Bo01, has been integrated in the environmental building programme of the cities of Malmö and Lund, and it is applied to all the new developments (Kruuse, 2001).

Other aim of the project regards the use of 100% renewable resources locally produced, the quote is calculated on an annual cycle. The energy supply system is based on a smart grid concept. The energy networks of the district and the city are thus connected and can exchange energy: when the quote produced by the district exceeds the demand, it can be redirected to the urban net, and vice versa.

The accomplishment of this ambitious target has required different technologies for energy production, based on solar, wind and geothermal sources, as well as natural gas and biogas from waste. The installed geothermal heat pumps exploit water from sea and aquifers, which is then stored in natural caves to facilitate the conservation of heat or cold, depending on the season. In addition, part of the energy is produced by 1,400 m^2 of solar collectors, 120 m^2 of solar panels installed on the roofs, and 2 MW wind power station (annual production of 6,300 MWh).

Biogas, used in the heating system and as fuel for vehicles, is produced fermenting the organic waste. The waste is collected both using traditional systems and through a pilot technology of garbage disposals integrated in the sinks (200 dwellings involved).

The energy consumption threshold of 105 kWh/m²/year was not achieved by the dwelling realized during the first phase of the project, due to underestimation of the thermal bridges. The level of energy consumption was 127 kWh/m²/year for buildings with heat recovery systems and 186 kWh/m²/year for those without, an increase of 40-60% on the expected consumption.

The higher levels of energy consumption were also related with social factors. In particular, was underestimated the role played by energetic habits and use of the buildings by their inhabitants. Using the data coming from the first constructions, important improvements could be included in the following buildings. Data collected in 2008 after the conclusion of the development, shown the achievement of the energy consumption/m² initially set.

MOBILITY

GWL-terrein - Amsterdam – The Netherlands

Compact city and mix of functions	000	Main results
High density of residential - working places	000	Technical and economical feasibility for district heating, CHP plant, and vacuum
Brown field reuse		waste system.
Mix of functions	000	Reduction of mobility-related costs. Site renovation and soil decontamina-
Public services	0 0 0	site renovation and soil decontamina- tion.
Score	8/10	
Solar gain and wind design	~ ~ ~	Optimization of color print out of a
Passive solar design	000	Optimization of solar gains, reduction of heat energy demand, and improvement
Use of solar energy (active/passive)	00	of the indoor comfort thanks to sun-
Microclimate control	00	oriented buildings.
Energy production from wind	• 0 0	
Score	1/10	0.2 car lots / unit.
Improvment of accessibility and connections	00	73% of all trips by non-motorized vehi-
Walkability	00	cles, 17% by public transport, and 10% by cars.
Urban grid and street design	00	10% of the inhabitants are car-sharing
Effectiveness of the policies among the residents	00	members, 20% are car owners.
Score	10/10	
Green and water design		Reduction of the runoff effect thanks to
Microclimate control	• • •	permeable surfaces.
Green infrastructures	000	Increased biodiversity in the district
Water management	õõõ.	Building thermal balance achieved through green roofs.
Energy production (biomass, purification)	ĕŏŏ	anough green oon.
Score	2/10	
Technologies	~ ~ •	Pilot CHP plant: CO2 reduction of 50%,
District heating and CHP plants	000	energy performances increased by 10%. Building energy consumption decreased
District cooling	000	building energy consumption decreased by 50%.
Energy from waste (incineration)	000	.,
Solar and photovoltaic panels	00	
Building materials and energy performances	00	
Score	3/10	(')
Global score	24/50	

Promoted by the city of Amsterdam in 1989 and completed in 1998, the project is located in the west part of the capital, on an area of 6 hectares. Although characterized bv ecological and energetic sustainability, the central focus of the project is connected with the reduction of motor vehicles. This target has been achieved by radically sinking the available car plots (110 parking lots for a population of 1,500 inhabitants, plus 25 lots for visitors). improving the public connections, and introducing car sharing. Besides, rent or buy a also flat includes subscribe special agreements between municipality and future

inhabitants, who accept to reduce cars usage as mean for improve the quality of urban areas.

To strength this policy and avoid that the GWL-residents, although bounded by contract, use the surroundings plot areas, all the neighbor districts are subjected to a strict allocation of parking spaces. Nevertheless, the car ownership rate is roughly 20%, higher than expected, although the proportion of trips in rather low and mostly related with long distances. Car rental from other areas of the city, share of parking spaces or cars with friends or relatives, and a private use of the working place parking lot, can explain the elevated percentage of residents owning a vehicle despite the limitations imposed

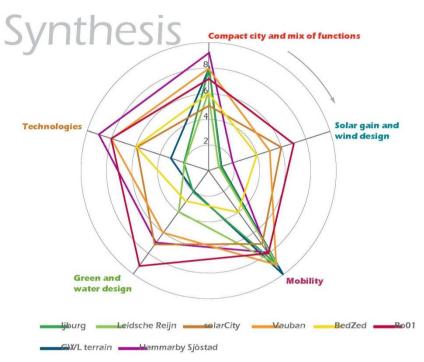
The use of motor vehicles, however, appears limited. Only 2% of the residents can be considered as car-dependent (car trips above 50% of the total), while 57% of the residents can be regarded as car-free (car trips less than 10%).

Other targets for improving the district sustainability were related with energy saving and production, water recycle, conservation of green areas, and waste recycle. Each target was then applied through specific projects, including, for example, rainwater recovery, green roofs, waste separation at source and

maximization of the recycle, passive solar technologies, and cogeneration power plant.

Different building types and mix between rental and property apartments was created to encourage social mix. Of the 600 units produced, 300 are rented as social houses, 150 sold at subsidized price and 150 at market value.

The chosen built environment density is 100 dwellings per hectare, while the height of the buildings is between 5 to 11 floors for those located along the north and west perimeter, so that they can perform a noise barrier function, while the inner buildings are oriented to optimize passive solar gains, further increased by glazing surfaces. Winter heat retention and summer temperature control are improved through green roofs and local high thermal performing building materials.


Stormwater management is meant to provide water for non-drinking purposes. Rainwater collectors were installed during the first years, but then removed due to negative results both in terms of duration and increase of energy consumption. Green roofs and green areas are nowadays the two used systems. The high percentage of permeable surfaces (about two thirds of the all area) drastically reduced the run-off phenomena. Water management involved also installation of sanitations able to cut off 30% of the water consumption.

The energy performance of the buildings is 50% lower than referent buildings, with 730 m^3 of natural gas per year equivalent compared with 1.400 m^3 of the referents. Energy reduction was attained also by installing a district cogeneration power plant.

No.9, Year 2017

RESULTS

Comparing the obtained results of the case studies, it is possible to recognize good or satisfactory results for all the thematic areas, with the exception of the solar design, which seems to have lower application within the design choices. This have aftermath for passive solar gains, which results in increasing energy demand in winter, and installation of solar and photovoltaic panels, which do not have suitable exposure conditions. Overlapping the spider charts are provided both an effective comparison of the different experiences and useful information related with the theoretical areas that had stronger influence on the design and/or the challenging elements still existing. In particular, the projects obtaining a pentagonal shape give the best results, as all fields (thematic areas of the design) have received the same development into the project.

Several conclusions can be drawn related with the sustainable design of new settlements. In general the high density and compact city concepts are applied in the entire analyzed projects, which recognize the positive effects related with the installation of DER systems, public transport, and public services in accordance with principles of effectiveness and efficiency. The

compact city is linked with the increase of functional mix and that has positive effects on reducing energy demand peaks. Some case studies present limited functional mix, which can be explained either with the limited dimension of the plot (as for GWL-terrain and BedZED) or with the ongoing transformation, which does not allow an overall assessment. Reuse of former industrial or urbanized areas has been applied in most cases, with the only exceptions of SolarCity and Leidsche Rijn, due to shortage of available land compared with the needs of the cities.

General focus is directed towards the exploitation of passive solar gains, by identifying optimal building / urban grid orientation and optimal relationship between buildings and road section. Even though the energy reduction achievable by passive solar gains is widely known, some projects did not focus on its exploitation, centering more the development on the urban design aspects. The use of wind as source of energy, as well as the protection of the settlement by modifying the urban grid and/or introducing green areas. has a rather poor implementation, with the only exception of Bo01 (Malmö) where urban morphology was used to control air flow and modify urban microclimate. Green and water design, such as creation of green infrastructures, green roofs, and water cycle management, are mainly directed towards the increase of permeable surfaces, increase of biodiversity, and ease water treatments. The micro-climate mitigation effect provided by green areas and corridors is usually not considered within the design goals, as well as in monitoring phases, except in cases of SolarCity and Vauban. There may be a need for additional evaluations focusing on the final development stages of each of the urban districts. Such evaluations could determine whether these case studies have influenced the construction process in the final stages of the project and also decide whether there has been any progression in the use of technical innovations (Iverot and Brandt, 2011).

The infrastructure grid (public transport net, bicycle and pedestrian lanes, etc.) has been deepened in all the case studies, which especially concentrated to the morphological and functional conditions that ensure effectiveness to non-motorized transport. Less attention was paid to implement measures and policies that support changes in the behavior of the inhabitants, particularly in relation with reduction of car ownership/use. It follows that, in most cases, the potential arising from a different urban grid design does not reach fully results in car reduction.

Technologies are mainly related with district heating and CHP plant, considered among the most effective means to reduce energy demand.

Improvements in the building envelopes and building energy performance are adopted to decrease energy consumption per square meter. At the end of the day Sustainability in its full scope applies to the construction, the lifestyle, habits, patterns & behavior of occupants. A full vision of sustainability and resilience when it comes to these urban districts has to be one of holistic ecological design & management in terms of: Energy consumption & CO2 emissions, production of renewable energies, material cycles & material sourcing with local ecosystem enhancements, social responsibility: social & (local) economic development, and happy cities: healthy and happy lifestyles.

REFERENCES AND BIBLIOGRAPHY

Sustainable urban design

Alberti M., Solera G., Tseti V., La città sostenibile: analisi, scenari e proposte per un ecologia urbana in Europa, Franco Angeli, Milano, 1994.

Banister D., Watson S., Wood C. (1997), Sustainable cities: transport, energy, and urban form, *Environment and Planning B*, 24: 125–143.

Beatley T., Green Urbanism: Learning from European Cities, Island Press, 1999

Bell S., Morse S., *Measuring Sustainability: Learning by Doing*, Earthscan Publications, Limited, 2003

Board on Sustainable Development Staff, *Our Common Journey: A Transition Toward Sustainability*, National Academies Press, 1999

Breheny M.J. (1992), *Sustainable Development and Urban Form*, London: Pion.

Burchell R.W., Listokin D. (1982), Energy and Land use, Center for Urban Policy Research, The State University of New Jersey: Rutgens.

Commission Of European Communities, Assessment of Solar Thermal Power Plant Technologies, DG XVII (Energy), 1996

Commission Of European Communities, *Comunicato della commissione al consiglio europeo e al parlamento europeo, una politica energetica per l'Europa*, Bruxelles, COM(2007) 1 definitivo, 2007

Commission Of European Communities, *Libro verde Verso una nuova cultura della mobilità urbana*, COM (2007) 551, Bruxelles, 2007

Commission Of European Communities, *Energia per il futuro: fonti energetiche rinnovabili, libro bianco per una strategia e un piano d'azione della Comunità*, COM (97) 599 def., Bruxelles, 1997

Delera A., Ronda E. (a cura di), *Quartieri popolari e città sostenibili: gli abitanti al centro di strumenti ed esperienze di riqualificazione urbana*, Lavoro, Roma, 2005

Department of the environment, transport and the regions, *Planning for sustainable development: towards better practice*, London, 1998

Dierna S., Orlandi F., Buone pratiche per il quartiere ecologico, Alinea, 2005

DiGaetano A., Klemanski J.S., *Power and City Governance: Comparative Perspectives on Urban Development*, University of Minnesota Press, 1999

Dresner S., *Principles of Sustainability (2nd Edition)*, Earthscan Publications, Limited, 2008

Droege P. (2006), *The Renewal City* – A comprehensive guide to an urban revolution, England: Wiley Accademy a division of Wiley & Sons Ltd.

Eco-Valle, Commissione europea Programma Life, - *Eco - barrios en Europa: Nuevos entornos residenciales*, EMVS, Madrid, 2006

Fouchier V., Les densités urbaines et le developpement durable: le cas de l'Ile-de-France et des villes nouvelles, Secrétariat général du Groupe central des villes nouvelles, Paris, 1997

Fontes E., Bosander P., Nilsson E. (2002), Fuel cells in the Nordic countries, *Fuel Cells Bulletin*, 2002, 5: 9-11.

Gauzin-Müller D., Architettura sostenibile, Edizioni Ambiente, 2003

Geller H., *Energy Revolution: Policies for a Sustainable Future*, Island Press, 2002

Gibson R. B., Sustainability Assessment, Earthscan Publications, Limited, 2005

Guzowski M., Daylighting for sustainable Design, Mc Graw-Hill, New York, 2000

Hak T., Moldan B., Dahl A. L., Sustainability Indicators: A Scientific Assessment, Island Press, 2007

Haughton G., Hunter C., *Sustainable cities*, Regional Policy and Development Series No. 7, Regional Studies Association and Jessica Kingsley Publishers, London, 1994

IPCC (2007), *Climate change 2007*, Synthesis report (Summary for Policymakers), Geneva

Iverot, S.P. and Brandt, N. 2011. The development of a sustainable urban district in Hammarby Sjostad, *Environ Dev Sustain* (2011) 13:1043–1064, Springer.

Jenks M., Burton E. (2000), *Achieving sustainable urban form*, London: Spoon press.

Kasemir B., Jaeger J., Jaeger C.C., *Public Participation in Sustainability Science: A Handbook*, Cambridge University Press, 2003

KennyM., Meadowcroft J., *Planning Sustainability: Implications of Sustainability for Public Planning Policy*, Routledge, 1999

Kersten G. E., Mikolajuk Z., Yeh A. Gar-On, *Decision Support Systems for Sustainable Development: A Resource Book of Methods and Applications*, Kluwer Academic Publishers, 1999

Klassen I. T., Knowledge-Based Design: Developing Urban and Regional Design into a Science, Delft University Press, 2004 Lai L. W.C., Ho Dr Daniel CW, Institutions/Culture and Sustainable Development, Part 2, Emerald Group Publishing Limited, 2006

Mallon K., *Renewable Energy Policy and Politics: A Handbook for Decision-Making*, Earthscan Publications, Limited, 2005

Nattrass B., Altomare M., *Dancing with the Tiger: Learning Sustainability Step by Natural Step*, New Society Publishers, Limited, 2002

Newman P. and Thornley A., Urban Planning in Europe. International Competition, National system and planning projects, Routledge, London and New York, 1996

Nijkamp P., Perrels A., Sustainable cities in Europe: a comparative analysis of urban energy environmental policies, Earthscan, London, 1994

Oberti I., Capolongo S., Signorelli C., *Comfort ambientale e ventilazione* (VMC): Casi studio, Politecnico di Milano, 2007

Parham S. (in collaboration with Josef Konvitz, for the Organisation for economic co-operation and development), *Innovative policies for sustainable urban development: the ecological city*, OECD, Paris, 1996

Rudlin D., Falk N., *Building the 21st Century Home: The Sustainable Urban Neighborhood*, Architectural Pr, 1999

SECURE – Sustainable Energy Communities in Urban Areas in Europe, Best practice on Energy Performance of new and Exisisting Buildings, 12 maggio 2008

Sousa (de) C., Tiesdell S., Current *Research in Urban and Regional Studies*, *Volume 3: Brownfields Redevelopment and the Quest for Sustainability*, Emerald Group Publishing Limited, 2008

Steemers K., Raydan D., Ratti C., Robinson D. (2000), *PRECis: Assessing* the Potential for Renewable Energy in Cities - Final Report, Cambridge.

United Nations Environmental Programme, United nations centre for human settlements, *Environmental guidelines for settlements planning and management*, Nairobi, 1987

Voogt J. A. (2002), Urban heat island, in Douglas I. (eds.), *Encyclopedia of Global Environmental Change*, New York: John Wiley & Sons. 660–666. **Compact city concept**

AAVV, Amsterdam Ijburg, in "Abitare", n. 417, maggio 2002, pp. 196-197 AAVV, Ijburg Amsterdam: Urban Design, Haveneiland and Rieteilanden, in "Area", n. 60, gennaio- febbraio 2002, pp. 16-19

Beatley T., *Green Urbanism: Learning from European Cities*, Island Press, 1999

Beatley T., *Planning for Sustainability in European Cities: A Review of Practices in Leading Cities* (2003), in Wheeler S., Beatley T., *The sustainable urban development reader*, second edition, Routledge, London, 2003

Cerruto R., *Nuovi orizzonti per Amsterdam* (http://www.parametro.it/architettando04.htm) Gemeente Amsterdam – Projectbureau Jiburg, *Stedenbouwkundig Plan Ri-O*, March 2007

Gemeente Amsterdam – Projectbureau Jiburg, Ontwikkelingsplan zeeburgereiland, April 2005

Gemeente Amsterdam – Projectbureau Jiburg, Samenvatting Plan- en besluitMER IJburg 2e fase BesluitMER Oostelijke Ontsluitingsweg IJburg 2e+3e fase Passende beoordeling IJburg 2e fase inclusief BesluitMER aanleg eerste 45 ha IJburg 2e fase Aanvaard, October 2008

Mozas J., Fernàndez Per A., *Density: new collective housing*, A+t ediciones, 2006, pp. 118-123

Municipality of Utrecht, The urban spatial development programme Leidsche Rijn Utrecht– The Netherlands. Working paper for the Leipzig Charter, April 2008

Projectbureau IJburg, *Herontwikkeling Zeeburgereiland milieueffectrapport* – samenvatting, May 2008

Romano M., Costruire la città, Skira editore, 2004

http://www.utrecht.nl/smartsite.dws?id=184753 (Leidsche Rijn – Utrect)

http://www.ijburg.nl/main.php (Ijburg - Amsterdam)

http://www.orestad.dk/ (Ørestad – Copenhagen)

Solar design

Brohmann B., Fritsche U., Schmied M., Schmitt B., Stahl H., Wiegmann K., Sustainable city Quarters: Material-Flow Analysis as a Valuation Tool – Research Project – Summary of the final report, Darmstadt/Freiburg/Berlin, December 2002

City of Freiburg im Breisgau – Sustainability office, *Freiburg Green City: Approaches to sustainability*, no data

Cylon Controls, *Case Study: The Green Building, Temple Bar*, Dublin, 2005 (http://www.cylon.com/en/applications/Green%20building.pdf)

Forum Vauban, Wohnen ohne eigenes Auto. Vauban spezial, Februar 1998, Freiburg, Germany

Forum Vauban, A Journey Through the Model District Vauban. A Vision Taking Shape, 1999, Freiburg, Germany

Hancock C., *Towards a sustainable city*, Urban Ecology - City of Tomorrow, Bo01-area in Malmö, Sweden, May 2001

Hodge J., Haltrecht J., *BedZED seven years on. The impact of the UK's best known eco-village and its residents - executive summary*, July 2009 (www.bioregional.com/actionplan)

Lazarus N., Beddington Zero (Fossil) Energy Development: Toolkit for Carbon Neutral Developments - Part II, BioRegional Agency, October 2003 Lechner R., Koblmüller M., Bruck M., Checkliste Für Städtebauliche Wettbewerbe, auf Basis des Bewertungstools LES! Linz entwickelt Stadt!, Wien / Linz, September 2004

Lutzky N. (BNL Consultancy), *The Environmental and Solar Sector in the Freiburg Region*, January 2004

Reutter U, Reutter O, *Car-Free Households: Who Lives Without an Automobile Today?*, World Transport Policy and Practice, Vol 2, n. 4, 1996 Scheurer J., *Car Free Housing in European Cities, A survey of sustainable*

residential development projects, Institute for Sustainability and Technology Policy, Murdoch University, Perth, Western Australia, 2008 (http://www.istp.murdoch.edu.au/ISTP/publica-

tions/jscheurer/carfree/carfree.html)

SECURE – Sustainable Energy Communities in Urban Areas in Europe, Vauban, Germany, May 2008

SECURE – Sustainable Energy Communities in Urban Areas in Europe, BedZED_UK, May 2008

Sperling C., Nachhaltige Stadtentwicklung beginnt im Quartier. Ein Praxisund Ideenhandbuch für Stadtplaner, Baugemeinschaften, Bürgerinitiativen am Beispiel des sozial-ökologischen Modellstadtteils Freiburg-Vauban, Öko-Institut/Forum Vauban, Freiburg, Germany, 1999

www.cylon.com/en/applications/Green%20building.pdf (The Green Building, Temple Bar, Dublin)

www.laterizio.it/costruire/_pdf/n131/131_22_25.pdf (Linz, solarCity)
www.linz.gv.at (Linz, solarCity)

http://upload.legambiente.org/mostragreenlife.org/docs/herzog_solarcity.pdf (Linz, solarCity)

www.solarregion.freiburg.de/solarregion/freiburg_solar_city.php (Linz, solarCity)

Wind design

City of Malmö, Västra Hamnen The Bo01-area. A city for people and the environment (download at www.malmo.se)

City of Malmö, *Bo01Ecological sustainable building and living in the Western Harbour*, Malmö, Bo01 City of Tomorrow European Housing Expo and Exhibition in Malmö17th May – 16th September 2001

Kalbro T., Mattsson H., *Urban land and property markets in Sweden*, UCL, London, 1995SECURE – Sustainable Energy Communities in Urban Areas in Europe, Bo01_Sweden, May 2008

Nilsson A., *Energianvändning i nybyggda flersbostadhus på Bo01 – området i Malmö*, Lunds Universitet, Sweden, 2003

www.malmo.se/vastrahamnen www.ekostaden.com

Mobility

Berents R., *Duurzaam bouwen in Amsterdam*, in PlanAmsterdam, No 4/1998 Cervero R., *Planned communities, selfcontainment and commuting: a crossnational perspective*, Urban Studies, 32, 1995, pp. 1135–1161

Purvis M., Grainger A., *Exploring Sustainable Development: Geographical Perspectives*, Earthscan Publications, London, 2004

Scheurer J., Car Free Housing in European Cities, A survey of sustainable residential development projects, Institute for Sustainability and Technology Policy, Murdoch University, Perth, Western Australia, 2008 (http://www.istp.murdoch.edu.au/ISTP/publica-

tions/jscheurer/carfree/carfree.html)

http://www.ejtir.tbm.tudelft.nl/ (European Journal of Transport and Infrastructure Research)

http://www.cabe.org.uk/case-studies/gwl-terrein (GWL-Terrain)

http://www.gwl-terrein.nl/?english (GWL-Terrain)

Green and water design

Baumueller J., Hoffmann U., Stuckenbrock U., *Urban Framework Plan Hillsides of Stuttgart*, The seventh International Conference on Urban Climate, 29 June - 3 July 2009, Yokohama, Japan

City of Stuttgart, Directorate for Urban Development and Environmental Protection, Office for Environmental Protection, *Environmental aspects in spatial planning in Stuttgart*, Scripts by the Office for Environmental Protection, n. 1/2009

Greiving S., Turowski G., *Spatial planning system in Germany*, University of Dortmund, Faculty of Spatial Planning, PDF file

Kazmierczak A., Carter, J., Adaptation to climate change using green and blue infrastructure. A database of case studies - Stuttgart: Combating heat island and poor air quality with green aeration corridors, The University of Manchester, 2010

Lenski S.C., *Urbanistica e paesaggio in Germania*, Università von Huboldt, Berlino

Office for Environmental Protection, *Environmental aspects in spatial planning in Stuttgart*, Stuttgart, n. 1/2009

Schriftenreihe des Amtes für Umweltschutz, *Climate change – challenge facing urban climatology*, Stuttgart, n. 3/2010

http://www.sustainablecities.org.uk (sustainable european projects)

http://www.stadtklima-stuttgart.de/index.php?start_e Stuttgart (Stuttgart City planning)

http://www.greenstructureplanning.eu/index.html (green infrastructures in Europe)

http://ec.europa.eu/ten/transport/maps/doc/axes/pp00.pdf

http://www.grabs-eu.org/downloads/EP6%20FINAL.pdf

No.9, Year 2017

Geo Information

http://www.secureproject.org/download/18.360a0d56117c51a2d3080007839 6/Bo01_Sweden.pdf http://www.greenstructureplanning.eu/scan-green/bo01.htm